Identificação não-intrusiva de cargas similares em smart grid usando rede neural convolucional
| dc.contributor.advisor1 | Celeste, Wanderley Cardoso | |
| dc.contributor.advisor1ID | https://orcid.org/000000021121937X | |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3919161245148947 | |
| dc.contributor.author | Firmes, Victor Pereira | |
| dc.contributor.authorID | https://orcid.org/0000-0001-9648-8511 | |
| dc.contributor.authorLattes | http://lattes.cnpq.br/8168261233259224 | |
| dc.contributor.referee1 | Coura, Daniel Jose Custodio | |
| dc.contributor.referee1ID | https://orcid.org/0000000221347981 | |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/5570995348839001 | |
| dc.contributor.referee2 | Martins, Felipe Nascimento | |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-1032-6162 | |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/6987889322617026 | |
| dc.contributor.referee3 | Rigo Junior, Luis Otavio | |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-7119-3095 | |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/6175412717273830 | |
| dc.date.accessioned | 2024-05-30T00:50:05Z | |
| dc.date.available | 2024-05-30T00:50:05Z | |
| dc.date.issued | 2020-03-11 | |
| dc.description.abstract | This work deals with the problem of identifying equipment monitored from a common coupling point, which equipment is technically identical from an electrical point of view, listed here as highly similar. So, experimentally, four fluorescent lamps and four computers are used, none or even all of which can be in simultaneous operation, resulting in two sample banks called Bank A, with about 8 million voltage and current samples required for each of the 16 possible configurations of the lamps, and Bank B, with 999600 voltage and current samples required by each of the 16 possible configurations of the computers. Such samples are acquired at 99960 samples per second, quantized in 16 bits. The objective is to use part of these randomly selected samples and, through manually and empirically configured convolutional neural networks, to train such networks to obtain accuracy compatible with those observed in the literature. An index is proposed to assess network performance. This index considers the number of network parameters and the training time so that the neural network can achieve a reference accuracy. In addition, the robustness of the methodology was verified in the face of variations in the nature of the behavior of the electrical equipment under identification, the decrease in the number of samples and the limitations in the acquisition hardware in order to sample the data in lower frequencies and resolutions. The results show that the networks maintained their performance, even with loads of a variable nature over time, reaching accuracy between 92.45% and 100%. They also show that the reduction in the number of samples has a negative impact on accuracy. However, it becomes significant from a 40 % reduction in the total number used in the network configuration process. Regarding the reduction of the sampling rate, it is possible to verify the non-commitment of the system with rates up to 8 times lower. Finally, decreasing the resolution of the samples causes significant degradation when the resolution is less than 10 bits. Therefore, this work proves that the non-intrusive method is also efficient to identify highly similar loads and shows that the presented methodology is a viable alternative when it is possible to deal with the high cost of identification involved, that is, the ability to obtain, store and process large masses of data in a non-prohibitive time | |
| dc.description.resumo | Este trabalho trata do problema de identificação de equipamentos monitorados a partir de um ponto comum de acoplamento, sendo tais equipamentos tecnicamente idênticos sob o ponto de vista elétrico, definidos aqui como altamente similares. Assim, de forma experimental, são usadas quatro lâmpadas fluorescentes e quatro computadores, sendo que nenhum ou até todos podem estar em funcionamento simultâneo, resultando em dois bancos de amostras denominados Banco A, com cerca de 8 milhões de amostras de tensão e de corrente demandadas por cada uma das 16 configurações possíveis das lâmpadas, e Banco B, com 999600 amostras de tensão e de corrente demandadas por cada uma das 16 configurações possíveis dos computadores. Tais amostras são adquiridas a 99960 amostras por segundo, quantizadas em 16 bits. O objetivo é usar parte destas amostras aleatoriamente selecionadas e, por meio de redes neurais convolucionais manual e empiricamente configuradas, treinar, tais redes para obter acurácias compatíveis com as observadas na literatura. É proposto um índice para avaliar o desempenho das redes. Tal índice considera o número de parâmetros da rede e o tempo de treinamento para que a rede neural possa alcançar uma acurácia de referência. Além disso, verificou-se a robustez da metodologia frente a variações na natureza do comportamento dos equipamentos elétricos sob identificação, à diminuição do número de amostras e as limitações no hardware de aquisição no sentido de amostrar os dados em frequências e resoluções menores. Os resultados mostram que as redes mantiveram o desempenho, mesmo com cargas de natureza variável no tempo, atingindo acurácias entre 92,45% e 100%. Mostram também que a redução do número de amostras impacta negativamente na acurácia. No entanto, torna-se significativo a partir de uma redução de 40% do número total usado no processo de configuração da rede. Com relação à redução da taxa de amostragem, é possível verificar o não comprometimento do sistema com taxas até 8 vezes menores. Por fim, a diminuição da resolução das amostras provoca uma degradação significativa quando a resolução é inferior a 10 bits. Portanto, este trabalho prova que o método não-intrusivo também é eficiente para identificar cargas altamente similares e mostra que a metodologia apresentada é uma alternativa viável quando se pode lidar com o alto custo de identificação envolvido, isto é, capacidade de obter, armazenar e processar grandes massas de dados em um tempo não proibitivo | |
| dc.description.sponsorship | Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.format | Text | |
| dc.identifier.uri | https://dspace5.ufes.br/handle/10/15180 | |
| dc.language | por | |
| dc.publisher | Universidade Federal do Espírito Santo | |
| dc.publisher.country | BR | |
| dc.publisher.course | Mestrado em Energia | |
| dc.publisher.department | Centro Universitário Norte do Espírito Santo | |
| dc.publisher.initials | UFES | |
| dc.publisher.program | Programa de Pós-Graduação em Energia | |
| dc.rights | open access | |
| dc.subject | Smart grid | |
| dc.subject | Redes neurais convolucionais | |
| dc.subject | Identificação de cargas | |
| dc.subject | Cargas similares | |
| dc.subject | Convolutional neural network | |
| dc.subject | Load identification | |
| dc.subject | Similar loads | |
| dc.subject.br-rjbn | subject.br-rjbn | |
| dc.subject.cnpq | Engenharia/Tecnologia/Gestão | |
| dc.title | Identificação não-intrusiva de cargas similares em smart grid usando rede neural convolucional | |
| dc.type | masterThesis |
Arquivos
Pacote original
1 - 1 de 1
Carregando...
- Nome:
- VictorPereiraFirmes-2020-dissertacao-livre.pdf
- Tamanho:
- 8.66 MB
- Formato:
- Adobe Portable Document Format
