Seleção de modelos e estimação de parâmetros no tratamento quimioterápico de tumores via inferência bayesiana

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal do Espírito Santo

Resumo

Cancer is a disease arising from the disordered growth of cells. Commonly, anti-neoplastic chemotherapy is used to treat the most common cancers. In this context, researcheshave turned to mathematical models that describe the growth of tumor cells with an action of achemotherapeutic drug. Faced with a variety of models in the literature for this purpose, a methodfor selecting the most suitable model is necessary. This dissertation studies mathematical modelsof cell growth and applies theApproximate Bayesian Computation(ABC) to select the modelthat best represents the observed data. The ABC algorithm used was deterministic, prioritizingthe model selection. To the selected model, the SIR particle filter was applied, which allowed toimprove the parameter estimates. Tumor growth models were studied using ordinary differentialequations and the parameters to be assumed as constants. The models were structured fromBicompartmental pharmacokinetics, which allow the study of antineoplastic drugs administeredorally. In addition, known tumor growth formulations were used by adding the influence factorof a single dose of chemotherapeutic drug

Descrição

Palavras-chave

Approximatte Bayesian Computation (ABC), Particles filter, Models of cell growth, Two compartments pharmacokinetics, Computação bayesiana aproximada (ABC), Filtro de partículas, Modelos de crescimento de células

Citação

MATA, Adriana Machado Malafaia da. Seleção de modelos e estimação de parâmetros no tratamento quimioterápico de tumores via inferência bayesiana. 2017. 62 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.

Avaliação

Revisão

Suplementado Por

Referenciado Por