Teorias de K-essência em espaços-tempos estáticos e esfericamente simétricos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
The study of general relativity minimally coupled to a scalar field in a static and spherically symmetric space-time shows that black hole solutions are possible with the existence of a scalar phantom field. These black holes, considered exotic, have infinite area horizon and zero Hawking temperature, hence they are called ”cold black holes”. Our objective is to propose a study of statics and spherically symmetric space-times in theories of k-essence. Such theories are widely applied in the context of accelerated expansion of the universe, dark energy and inflationary models, however there is a gap in the study of local objects such as stars, black holes and wormholes. In our study of k-essence theories in static and spherically symmetric settings resulted in two different solutions: a first solution with features similars to those found in cold black holes, but with two event horizons (of cosmological nature) and non-asymptotically flat; and a second solution with only one event horizon, similar to the Schwarzschild solution immersed in asymptotically singular space-time.
