Conjuntos de bases ZORA de qualidades 5 e 6 zeta de valência para o hidrogênio até o argônio : aplicação em cálculos de propriedades atômicas e moleculares

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal do Espírito Santo

Resumo

All-electron basis sets of quintuple and sextuple zeta valence qualities plus polarization functions (5ZP and 6ZP) for the elements from H to Ar, to be used together with the zero-order regular approximation (ZORA), have been developed. To describe electrons distant from the nuclei, diffuse functions were added to the 6ZP non-relativistic set, giving rise to the set designated as augmented 6ZP (A6ZP). A5ZP-ZORA, A6ZP-ZORA, and A6ZP-DKH (Douglas–Kroll–Hess) basis set were also generated. In order to have a better description of some molecular properties, 𝑑-functions with high exponents were added to the ZORA basis sets for the elements of the second-row. Using these basis sets together with the Coupled-Cluster method, ionization energies and static mean dipole polarizabilities of some atoms and geometric parameters, harmonic vibrational frequencies, atomization energies, and electric dipole moments of a set of molecules were calculated and compared with recommended and experimental values found in the literature. The performances of the ZORA and DKH Hamiltonians were evaluated.All-electron basis sets of quintuple and sextuple zeta valence qualities plus polarization functions (5ZP and 6ZP) for the elements from H to Ar, to be used together with the zero-order regular approximation (ZORA), have been developed. To describe electrons distant from the nuclei, diffuse functions were added to the 6ZP non-relativistic set, giving rise to the set designated as augmented 6ZP (A6ZP). A5ZP-ZORA, A6ZP-ZORA, and A6ZP-DKH (Douglas–Kroll–Hess) basis set were also generated. In order to have a better description of some molecular properties, 𝑑-functions with high exponents were added to the ZORA basis sets for the elements of the second-row. Using these basis sets together with the Coupled-Cluster method, ionization energies and static mean dipole polarizabilities of some atoms and geometric parameters, harmonic vibrational frequencies, atomization energies, and electric dipole moments of a set of molecules were calculated and compared with recommended and experimental values found in the literature. The performances of the ZORA and DKH Hamiltonians were evaluated

Descrição

Palavras-chave

Conjuntos de bases Gaussianas, Hidrogênio, Argônio, Método CCSD (T), Propriedades atômica e molecular, Hydrogen, Argon, CCSD(T) method, Atomic and molecular propertie

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como open access